

OPTIMIZATION INITIATIVES FOR A LONG-RUNNING GROUNDWATER PUMP & TREAT SYSTEM, (FORMER) NAVAL INDUSTRIAL RESERVE ORDNANCE PLANT, FRIDLEY, MN

Presented by

Brian S. Murray, PG, PMP

Naval Facilities Engineering Command, MIDLANT

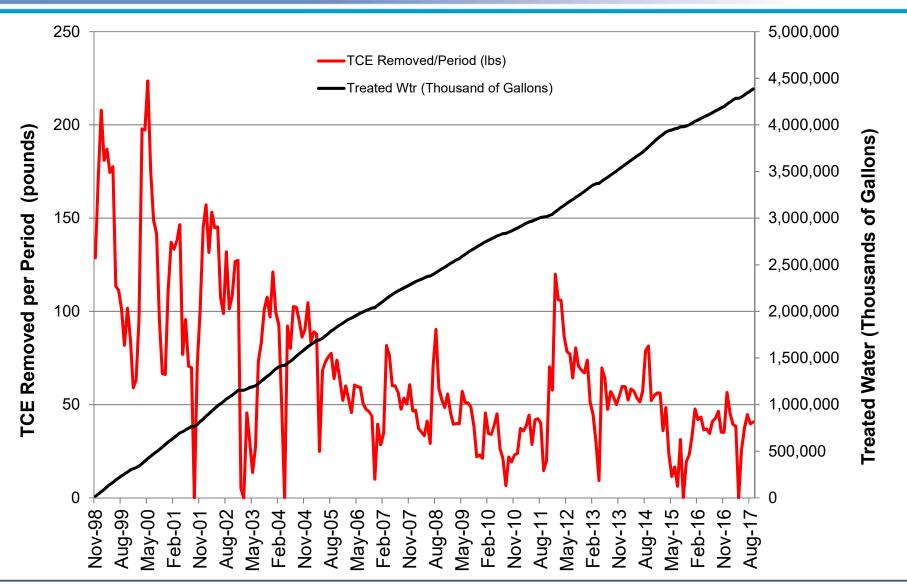
Objective of Presentation

Present interim results of several ongoing optimization initiatives focused on:

- Short- and long-term improvement in operation of groundwater treatment facility
- Optimization of a long-term groundwater monitoring program
- Evaluation of passive groundwater sampling method

Optimization of Operation of Groundwater Treatment Facility

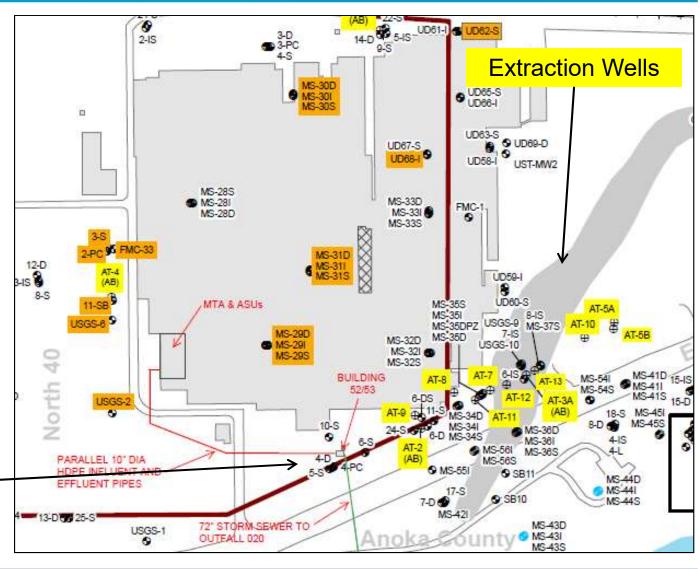
Navy constructed a groundwater treatment facility (GWTF) in 1992 'to capture and contain" a VOC plume



Main Treatment Area ASUs

- GWTF runs 24/7 and treats an average of ~ 16 million gallons per month. Cumulative TCE mass removed through December 2017 is ~41,100 lbs.
- Navy sold property in 2004 and 122 acre site is undergoing \$100M redevelopment as a commercial warehousing center
- Current GWTF and extraction wells are in need of a re-build planned construction during FY 2022
- Access to source areas for treatment is limited by new construction

GWTF Performance Curves



GWTF - Current Extracted / Treated Water Flow Path

- Groundwater is pumped from extraction wells to Bldg. 52/53 equalization tank
- Pumped to Main Treatment Area inside BAE building
- 3. Pumped to Outfall 020 to Miss. River

Optimization Review of GWTF Plant

Objective: Review of GWTF mechanical systems and operation for improvement (short-and long-term):

- ✓ Evaluation yielded eight minor, six moderate, and two major cost improvements
- ✓ Findings indicated one air stripper unit (ASU) could be taken off line due to reduced influent TCE concentration

Blower Operating Costs NIROP, FRIDLEY, MINNESOTA						
Number of Air Strippers Operating	4	3	2			
Monthly kWh	53,260	39,945	26,630			
Monthly Costs	\$6,391	\$4,793	\$3,196			
Annual Cost	\$76,700	\$57,500	\$38,300			
Cost Savings over 4 units operating	NA	\$19,200	\$38,400			

✓ Major improvement recommendations:

Plant should be re-built at a new location to:

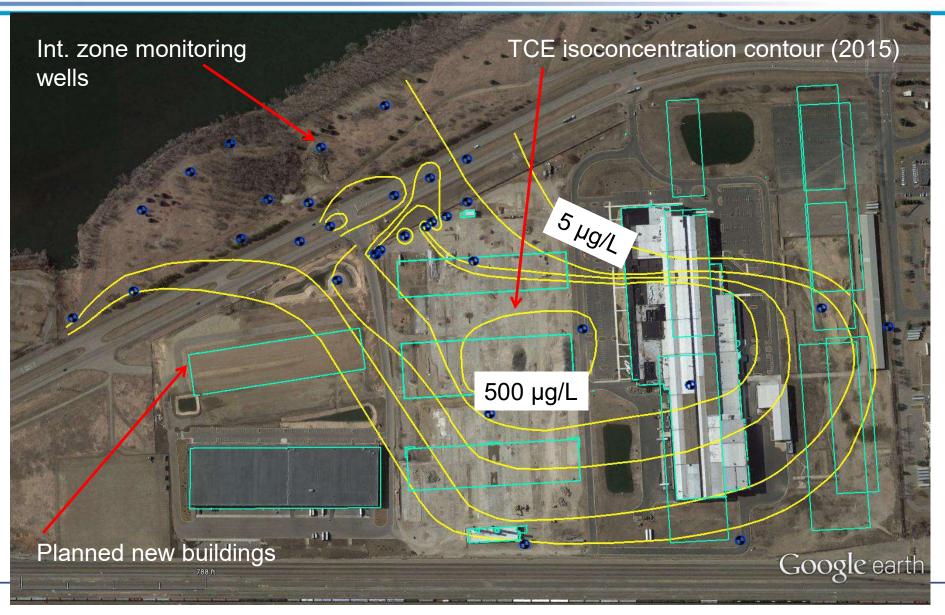
- place GWTF outflow near discharge to maximize gravity flow (fewer pumps)
- shorten pumping distance from extraction wells to GWTF plant
- allow for conversion to smaller, easier-maintained ASUs

Optimization of Monitoring Well Network

Objective: to refine/reduce number of wells sampled annually (~100) to match Navy's obligation to assess plume status

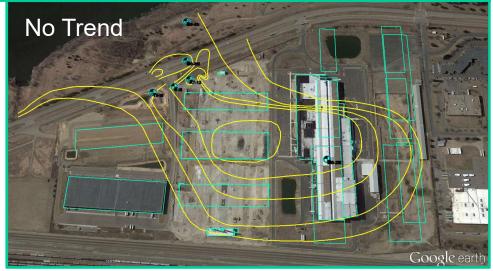
Site conditions driving well network optimization:

- ➤ It was time site investigation phase over and plume is stable
- ➤ 100+ wells for 83 acre site?! (this is too many for a mature site in RA-O phase)
- Site developer was abandoning Navy wells during construction (committed to one-for-one replacement well at Navy designated locations)
- Confidence in plume shape and COC concentration trend based on many years of annual sampling of groundwater


Screening Process and Tools for Evaluation

- Has well been sampled on a routine schedule?
- What data does a sampled well provide ? (frequency of detection, avg. conc., conc. range, etc.)
- Where is well located relative to plume delineation and assessment of contain/capture analysis? (i.e., well 'value')
- How sufficient is the number of wells per aquifer interval? (shallow, intermediate, deep, bedrock)
- What is the COC trend per well? (Mann-Kendall determination of increasing/decreasing/no trend)
- What are the regulators primary concerns/preferences relative to annual monitoring?

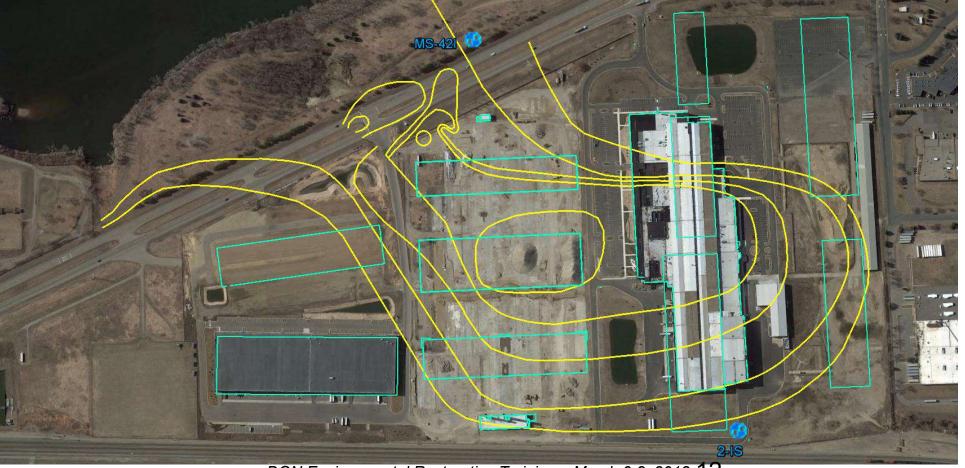
Example Map – 2015 Intermediate Zone Monitoring Wells and TCE Plume


Example – Summary of Mann-Kendal Trend (2001-14)


Used Mann-Kendall statistical analysis to show:

- 29 wells with a decreasing TCE trend
- 2 wells with an increasing trend
- 8 wells with no defined trend

Optimized Intermediate Wells - Annual & Biennial Sampling



Location	Current Sampling Frequency	MAROS Trend Analysis Result	MONITORING RECOMMENDAT IONS	OPTIMIZATION RATIONALE
2-IS	Annual	Downward Trend	Five Year	Upgradient, decreasing trend, low concentrations
MS-42I	Annual	Downward Trend	I - IVA VA2r	Redundant location with 17-S, plume edge, low concentrations. Redundant location warrants sampling at Five-Year Review.

Optimized Sampling Design

Monitored Interval	Previous Sample Design	Optimized Sampling Design		
	2015	Annual	Biennial	Five Year
Shallow	34	19	12	5
Intermediate	29	18	11	2
Deep & Bedrock	29	12	13	4
Yearly Total	92	49	36	11
% Reduction vs. 2015		47%	61%	87%

Take Aways – Well Network Optimization

- Assess if site monitoring program needs tweaking (are too many wells sampled for site area & for meeting monitoring objective?)
- Need enough data to assess trends and each well's value (i.e., is next year sample results likely to be the same as past years?)
- Keep the statistical analysis simple use one technique (e.g., MAROS)
- Negotiate and compromise if needed (e.g., retain a well for water level measurement but drop from sampling plan)
- Retain key wells needed for Five Year Review sampling
- Follow up optimization with well abandonment actions
- Final optimization design may require a workshop meeting with regulators to resolve differences

Optimization of GW Sampling – Use of Passive Sampling Method

Objective: To evaluate use of lower cost passive sampling method for annual groundwater monitoring

Screening Process and Tools Used:

- ✓ RITS presentation provided key concepts to evaluate change in sampling
- ✓ CLEAN contractor performed desktop study of available technologies/devices to perform passive sampling
- ✓ Previous USGS study of passive diffusion bags indicated comparable results
- ✓ NIROP Fridley COC list is constrained to VOCs

Benefits of Passive Sampling Devices

- Majority of sampling devices are disposable, eliminating potential crosscontamination
- ➤ Relatively easy to deploy and recover (most require a 2 week equilibrium period between deployment and recovery)
- Can be deployed in most wells (even damaged wells or obstructed wells)
- Minimal disturbance of water column upon deployment
- Can sample discrete intervals within a well (deployed in a series for vertical contamination profile) & no depth limits
- Most samplers are not subject to interference from turbidity
- Monitoring of stabilization parameters not required
- No purging of well required; therefore no associated disposal cost
- Water sample is representative of formation water
- ➤ Low initial cost / capital investment
- Decrease in field labor and overall sampling event duration

Limits of Passive Sampling Devices

- Device must be fully submerged within screened interval during deployment
- Improper placement can result in significant concentration differences
- Requires the aquifer to be in hydraulic communication with the screened portion of the well
- Collection of water chemistry parameters (if required) would add a separate sampling step
- Some devices may have volume/analyte limitations
- Requires consideration of contaminant stratification

Sampling Devices

GORE Module

Diffusion and sorption via membrane to accumulate on absorbent

Regenerated-Cellulose Dialysis Membrane Sampler

Deionized water-filled bag, suspend in well to equilibrate then recover

HydraSleeve

Grab sampler, deployed to stabilize, pull to open and collect sample

Rigid Porous Polyethylene Sampler

Diffusion through waterfilled pores to equilibrate then recover

Snap Sampler

Grab sampler, deployed to depth, trigged to close and retrieved. Bottle sent to lab.

Passive Diffusion Bag Sampler

Deionized water-filled bag, suspend in well to equilibrate then recover

Cost Reduction

Passive groundwater sampling techniques typically provide a much lower "per sample" cost than conventional low-flow sampling methods

- Reduction in labor hours
- Elimination of costs associated with handling and disposal of purge water

Overall cost comparison between passive and low-flow techniques

- Passive Samplers
 - >99.75% of the total LTM cost is associated with sample collection
 - ■15% towards sample collection (labor)
 - ■85% towards cost of sampling device
- Low-flow Sampling
 - ▶45% of the total LTM cost is associated with sample collection
 - ■93% towards sample collection (labor)
 - ■7% towards sampling equipment (pumps and meters)

Cost Comparison

Device/Method	Overall Cost Per Sampling Event	Estimated Sampling Days
Gore Module (1)	\$41,475	7
Hydra Sleeve	\$37,620	8
Snap Sampler	\$41,870	10
Regenerated-Cellulose Dialysis Membrane	\$42,900	8
Rigid, porous, polyethylene	\$41,060	8
Passive diffusion bag	\$38,760	8
Low Flow Sampling	\$91,060	12

¹ – cost for Gore Module includes VOC analysis

Key Considerations

- Comparable results PDB sample analytical results must be similar to historic sampling results using low flow sampling method
- Regulatory acceptance USEPA typically acceptive of passive sampling as long as site hydrology is well understood
- Most States require some sort of comparative study if passive samplers are intended to replace existing sampling technique
- Low-flow sampling yields water that may be representative of the entire length of the screen due to mixing; whereas, passive sampling yields water from a discrete location within this interval
- Side-by-side field test comparing PDB sampling to low-flow sampling was previously conducted at NIROP Fridley in 1999 (19 wells):
 - ➤ Test results showed a good agreement in several wells between the two sampling techniques, but also showed a poor agreement in others
 - ➤ It was concluded that the data from the PDB samplers accurately reflected the VOC concentrations in the screened interval of the well; whereas, the data from the low-flow sampling reflected VOC concentrations from the entire well due to mixing during pumping

Take Aways – Use of Passive Sampling Approach

- Represents a lower cost approach to routine, repetitive sampling for groundwater monitoring programs with established COCs and sufficient data for comparison
- Will likely require a comparability study to prove to regulators that new technique provides data similar to historic data
- May be applicable to only a subset of wells
- Draft PDB Sampling and Analysis Plan to be submitted to US EPA Region 5 and Minnesota Pollution Control Agency for review

Supplemental Information

NAVFAC EXWC 2013 – *Transitioning From Conventional to Passive Sampling for Groundwater* (April)

Tetra Tech 2017 - Technical Memorandum Alternative Sampling Methodologies, Operable Unit 1, Naval Industrial Reserve Ordnance Plant, Fridley, MN (January)

RITS 2016 (Dr. E. Cohen, Arcadis) – Passive Groundwater Sampling: Effective Tools to Transition Your Program

Contact and Questions

Point of Contact:

NAVFAC MIDLANT: Brian S. Murray

brian.s.murray@navy.mil Phone: (757) 341-0491

Questions?